

Overview of Automotive Electronics Lab

Sl. No.	Experiment name	Purpose & overview of the experiment
1	Antilock breaking system development & testing	Gain the deeper insight of control engineering & system development using embedded systems in Automotive technologies. Learners will be able to understand the system architecture, system behaviour & system control. Step 1: Modeling the ABS System in Scilab/Matlab to study the system behaviour with various conditions for speed, brake torque & slip. Step 2: Perform the hardware test to collect & compare the results with Models results in Scilab/Matlab Step 3: Controller algorithm development for ABS tuning
2	PMSM/BLDC motor control & algorithm development	Gain the practical insight of motor controls, motor behaviour, tuning & calibration & develop the control models using Matalb Simulink Learners will be able to understand the scope of motor controls & calibration. Appreciate the need for MDB in controller development Step 1: Build the Matlab Simulink model of BLDC motor controls with closed loop PI control. Perform test cases to study motor response. Step 2: Perform the above test cases on real hardware, log the data & compare the model & real hardware results Step: Tune the control for the system & improvise
3	Stepper motor control for the IAC application	Gain the practical application of stepper motor & controls for real world applications. Learners will be able build a real application of stepper motor for IAC application. Step 1: Build the Matlab/Simulink model of IAC valve for various loads Step 2:Develop the control algorithm for stepper motor control
4	Automatic control of actuators	Gain the exposure to understand the need for automatic control of actuators for various automotive applications
5	Automatic wiper control	Gain the application knowledge to auto control the wiper for various rain conditions such as low, medium & high rain. Develop the control algorithms for driving servo motor

Scope for future research & lab advancement

For ABS lab

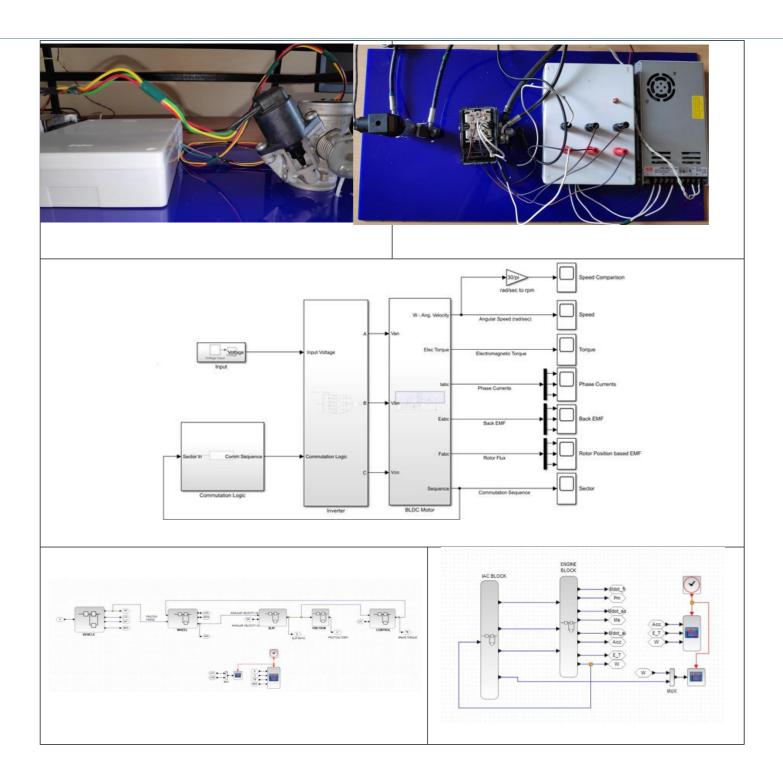
- 1. Advanced MBD of ABS for 4/6/8 wheeler applications using Matlab/IGP carmaker/Scilab
- 2. Validation of Model data to real worldtesting
- 3. Improvement of experimental setup with Dspace/NI HIL systems
- 4. Product development of ABS & control forreal worldapplications

Stepper motor control

- 1. Real time integration & control forautomotive application or otherapplications
- 2. Advance MBD inMatlab
- 3. Advanced system tuning with variousload conditions

For Motor controls lab

- 1. Advanced control approach MBD suchas
 - a. Direct Torque control (DTC)
 - b. Field Orientation Control(FOC)
 - c. Field WeakeningControl
- 2. Labadvancement
 - a. Simulink to Embedded codegeneration
 - b. Load control and calibration
 - c. HIL unit for motortesting
 - d. Real vehicle level control implementation


Wiper control and Sensors & actuators

1. Development of sequencing control for vehicle turn on/off, Charging, Crash, remote control etc.

Overview of the E-mobility Lab setup at Christ University

